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ABSTRACT: WaterMap and MM-GB/SA scoring methods were applied
to an extensive congeneric series of small-molecule SRC inhibitors with
high-quality enzyme data and well characterized binding modes to
compare the performance of these scoring methods in this data set and to
provide insight into the relative strengths of each method. Only minor
conformational changes in SRC bound with representative DFG-in class
of inhibitors were demonstrated in previous studies; thus, the protein
flexibility that normally presents a challenge to pose and potency
predictions was minimized in this model system. While WaterMap
correctly recognized major trends in the SAR of this series, MM-GB/SA
performed better in ranking the relative ligand affinities. The different scoring methods were further analyzed to determine which
aspects of series SAR were more amenable to MM-GB/SA than WaterMap scoring.
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Computational prediction of compound potency has for
some time been integrated into the lead optimization

cycle at pharmaceutical companies. The promise of robust
scoring methods is to maximize potency of lead compounds
while reducing the number of molecules synthesized. However,
obtaining a predictive model even for series with information-
rich SAR can be challenging. Many scoring methods, and in
particular molecular-mechanics based MM-GB/SA and MM-
PB/SA scoring, have been evaluated for their ability to predict
relative binding affinities for compounds in congeneric
series.1−3 The use of MM-GB/SA as a scoring function is
well documented and was shown to be superior to scoring with
Glide XP in some cases.1 Scoring large data sets with
WaterMap4 is relatively new, and its predictive ability has so
far been most extensively validated for filling hydrophobic
enclosures with appropriately placed substituents.5,6 WaterMap
describes the energetics associated with displacing water in the
protein active site by the ligand upon binding by filling the
cavity of the protein with explicit water molecules and
approximating the desolvation energy as the sum of the
energies of hydration sites displaced by the ligand.4,5 In this
work, WaterMap and Prime MM-GB/SA7 were applied to a
congeneric series of SRC kinase inhibitors, with the goal of
assessing WaterMap performance as a scoring function by
comparing it to MM-GB/SA scoring. Recently, Robinson et al.
published a study of kinase selectivity using WaterMap, where
they report good correlation between water location and
observed selectivity of ligands for selected tyrosine kinases.8

The goal of our study is to evaluate whether the displacement
of high energy waters found in the SRC binding site is sufficient
for relative ranking of the ligand activities in a congeneric series
or whether other factors, such as the protein−ligand

interactions, play a significant role for this data set and must
therefore be explicitly considered to obtain predictive scoring.
At ARIAD, we have accumulated significant data in a lead series
of SRC tyrosine kinase inhibitors.9−11 SRC kinase is a
prototypical member of the kinase family, whose abnormal
activity is associated with osteoporosis12−14 and cancer
metastasis.15,16 The development of small-molecule SRC
inhibitors, targeted to block the ATP-binding site and regulate
SRC activity, remains an area of active research, and it has been
shown that inhibition of SRC activity correlates to reduction of
disease progression in some cancers.17 As SRC continues to be
a target of interest, the investigation of scoring functions to
rank small-molecule inhibitors of this and other tyrosine kinases
also remains relevant. Structurally, SRC kinase can adopt DFG-
in active, DFG-in with a helix-C twist, and DFG-out inactive
conformations, as observed in other tyrosine kinases where
active-to-inactive conformational conversions are determining
factors of inhibitor binding.18 The compounds studied here
bind to SRC in the active DFG-in conformation, with only
modest conformational SRC flexibility. The binding site of SRC
in complex with purine-based inhibitor AP23464 is illustrated
in Figure 1A.9 The purine template is bound at the hinge, with
one hydrogen bond between the backbone nitrogen of M341
and N7 of the purine, and a second hydrogen bond between
the carbonyl oxygen of M341 and the aniline nitrogen of
AP23464. The 3-hydroxyphenethyl N9 substituent is extended
into the kinase selectivity pocket, forming key interactions with
the residues of that pocket. The aromatic ring forms stacking
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interactions with K295, M314, I336 (not shown), and T338;
the hydroxyl group forms a hydrogen bond with E310 and
D404. The purine C6 substituent, an aromatic phosphine oxide,
extends into the solvent. Finally, the cyclopentyl purine C2
substituent extends into the ribose pocket and makes
hydrophobic contacts with surrounding residues. During lead
optimization in a SRC kinase inhibitor program, an extensive
series of trisubstituted purines with substitutions at the N9
(R1), C2 (R2), and C6 (R3) positions of the purine template
was synthesized and tested for SRC kinase activity. The data set
used for the present study consists of 49 neutral compounds
whose activities span more than 3 orders of magnitude, from
subnanomolar to micromolar range (Table 1 and Table S1 of
the Supporting Information). The compounds were docked
into the X-ray crystal structure of SRC (PDB: 2BDJ) using
Glide XP19 as described in the experimental procedures in the
Supporting Information. WaterMap and MM-GB/SA scoring
protocols were applied to obtain predicted free energies of
binding. For MM-GB/SA scoring, a good correlation between
the experimental and predicted free energies of binding was
obtained, with an r2 of 0.68 and the predictive index (PI) of

0.81 (Figure 2A). PI is a metric of rank ordering of compounds,
with 1 corresponding to perfect ranking and 0 signifying
random prediction.20 For comparison, Glide XP scoring of this
data set yielded a poor correlation (r2 = 0.34, and PI = 0.59;
plot not shown).
The evaluation of the WaterMap prediction begins with the

analysis of the hydration regions in the active site (Figure 1B).
As previously described,8 the SRC kinase binding site contains
several high-energy hydration regions, with highest-energy
waters located at the hinge and the hydrophobic pocket.
WaterMap places 36 hydration sites in the protein cavity.
Twenty one of the sites, colored in brown and red in the figure,
are unstable (ΔG > 1.0 kcal/mol), meaning that their
displacement by the ligand should result in a net gain in the
binding free energy. Of those, 4 are very high-energy sites, with
ΔG > 3.5 kcal/mol relative to bulk water (shown in red). Ten
waters (green) are moderately unstable (0 < ΔG < 1.0 kcal/
mol), and the remaining 5 (cyan) are stable (ΔG < 0 kcal/
mol), with one molecule particularly stable (ΔG = −3.5 kcal/
mol). It is interesting to note that the computed hydration sites
overlap with five crystallographic waters observed within 5 Å of

Figure 1. (A) AP23464 in the binding site of SRC (PDB: 2BDJ) with crystallographic waters shown. (B) WaterMap of 2BDJ. High energy, unstable
waters (red and brown) are located in the hydrophobic pocket and at the hinge binding site. Moderately unstable (green) waters are located in the
proximity of the ligand, and stable (cyan) waters are for the part further away from the ligand. The attachment sites R1, R2, and R3 are labeled in red.
The five crystallographic water positions were also identified by WaterMap (circled in blue: distance between experimental and computed water was
1.2 Å or less).

ACS Medicinal Chemistry Letters Letter

dx.doi.org/10.1021/ml200222u | ACS Med. Chem. Lett. 2012, 3, 94−9995



the ligand in the crystal structure. This visual analysis of the
WaterMap provides an indication of where the most significant
gain in potency may be achieved. Three high energy water
molecules are found in the vicinity of the R1 position. The
hydroxyphenethyl ring of AP23464 displaces one of the high
energy, buried waters (w11, ΔG = 6.6 kcal/mol) and partially
displaces two more (w7, ΔG = 4.3 kcal/mol, and w27, ΔG =
2.6 kcal/mol). Several of the high energy waters are associated
with the hinge region of the kinase and have been previously
reported.8 These waters are consistently displaced by the purine
template of the inhibitors in our data set, and their contribution
to the computed free energy of binding can therefore be
assumed to remain constant. In the ribose pocket (R2
position), only one unstable water molecule (w19, ΔG = 2.9
kcal/mol) is observed. Finally, at the solvent front (correspond-
ing to the R3 position), several waters are found, with the free
energy in the range from 1.5 to 2.5 kcal/mol. Thus, WaterMap
predicted that the largest gain in potency may be achieved by
displacing water molecules in the selectivity pocket of the
enzyme and making appropriate R1 substitutions.
The 49 docked ligands were scored with the WaterMap

scoring function and the computed binding free energy
(ΔGbind) values plotted against the experimental binding
affinities (ΔG, approximated from IC50 values) (Figure 3A).
Instead of a linear correlation, the plot revealed a prominent
splitting of the data set into two groups separated by a gap in
computed free energy values (ΔΔG) of at least 9.4 kcal/mol.
Examination of the compounds in each group reveals that those
with bulky aromatic R1 substituents are scored as more active
than compounds with smaller substituents (ethyl or methyl).
This finding is consistent with the observation that the largest
energetic contribution to overall binding energy comes from
interactions in the hydrophobic pocket. The R1-substituted
compounds are clustered in the lower half of the graph. Of
those, the most active compounds (measured IC50 values under
5 nM) were predicted correctly and are clustered in the lower
left-hand quadrant of the graph. Similarly, compounds that are
least active (upper right-hand quadrant, measured IC50 values
greater than 200 nM) were predicted correctly. Compounds in
the middle range of activity (between 5 nM and 200 nM) are
predicted incorrectly, with compounds bearing aromatic R1
substituents always scoring significantly better. For example, 39
and 35 have measured IC50 values in the same range (198 nM

Table 1. Representative Compounds from the SRC Data Set
(IC50 values reported in nM)a

aThe complete data set is shown in Table S1 of the Supporting
Information.

Figure 2. (A) Experimental vs computed ΔGbind values (MM-GB/SA) for the complete data set (r2 = 0.68, PI = 0.81). (B) Experimental vs
computed ΔGbind values (MM-GB/SA) for the R3 substituents (r2 = 0.80, PI = 0.94).
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and 155 nM); however, the difference in predicted free energy
values between these two compounds (ΔΔG) is 11.0 kcal/mol.
Compound 35, lacking an extended hydrophobic substituent, is
scored as much less active than 39. In another example,
compounds 5 and 26 have measured IC50 values of 0.9 and 43
nM, respectively; both carry a 2,5-dimethyl phenethyl at the R1
position. However, 26 is predicted to be more potent than 5 by
2.3 kcal/mol. In summary, WaterMap scoring is dominated by
the influence of the R1 substituent in the hydrophobic pocket.
(Note, however, that the high values of r2 = 0.55 and PI = 0.72
indicate that the best and worst compounds were correctly
predicted). To investigate this observation further, we evaluated
a subgroup of compounds with varying R1 (and constant R2
and R3), to detect any correlation with the activity of the R1
group alone. No meaningful correlation between the WaterMap
predicted ΔGbind and experimental ΔG was detected.
The next question we posed was whether WaterMap can

recognize the more subtle SAR trends in the data when we
remove the distorting influence of the R1 group. We considered
two subgroups of compounds, one with R1 and another with
R2 modifications only (keeping the remaining two substituents
constant). In the case of R2 (ribose pocket), no meaningful
correlation could be obtained. There might be several factors
responsible for this lack of correlation. First, a degree of
complexity is added by the flexible nature of the substituents in
the ribose pocket. The uncertainty in the binding pose resulting
from this flexibility means that a small conformational
modification may have a drastic effect on the resulting ΔG.
The energy differences predicted by WaterMap in this pocket
can be largely attributed to displacement of one water molecule,
w19, which contributes ΔG of 2.85 kcal/mol. Additional energy
can be gained by displacing w31 (0.8 kcal/mol) and w15 (1.1
kcal/mol). This means that if a side chain conformation favored
by the docking pose does not entirely displace the high-energy
water, the free energy gain cannot be accurately estimated by
WaterMap. Additionally, parts of the ribose pocket are solvent
exposed. The energetic estimation at the solvent front is
difficult and remains an area of active methodology develop-
ment. Finally, a good prediction was obtained for the set of
compounds with substituents at the R3 position (Figure 3B),
with WaterMap (r2 = 0.65 and PI of 0.76). MM-GB/SA once
again yielded an even better correlation, r2 = 0.83 and PI = 0.93
(Figure 2B). The reason for the improved correlation in this

series is that w28, w13, and w36 are located at the solvent front
and, in this case, the top scoring conformations of the docked
ligands enabled the displacement of the high-energy waters. To
appreciate the complexity that this data set presents for
WaterMap scoring, we examine the experimental SAR trends.
Modifications at each of the three positions R1, R2, and R3
affect the potency to varying degrees. The largest increase in
potency is attained by addition of a hydrophobic substituent at
R1 (selectivity pocket). The most active, subnanomolar
compounds carry a hydrophobic R1 substituent. The loss of
the R1 substituent results in at least a 10-fold decrease in
potency. To illustrate, compound 22 has a methyl substituent at
the N9 position, and a measured IC50 of 25.1 nM, whereas 5,
extending into the selectivity pocket with a 2,6-dimethyl
phenethyl group, is almost 30-fold more active, with an IC50
value of 0.89 nM. Substituents at the R2 (ribose pocket)
position present a more ambiguous SAR. Small hydrophobic
groups or monocycles (e.g., 3-chloropyridine) are associated
with active compounds, while larger, polar groups lead to loss
of activity. Two crystallographic waters interact with the N3 of
purine via a hydrogen bonding network in the vicinity of the R2
substituent (Figure 1A). We speculate that the substituents at
that position may exert some influence on the strength of the
hydrogen bond, which may in turn affect the binding energy.
To investigate this effect, we used a single-point quantum
mechanical calculation with Jaguar21 on the docked poses of
compounds 35, 38, and 48. We observed that the charge of the
N3 nitrogen varies depending on the R2 substituent (−0.53 for
compound 48; −0.57 for compound 38, and −0.48 for
compound 35), and this may contribute to the varying strength
of the N3-water hydrogen bond. Finally, the SAR at the R3
position reveals a span of activities varying by a factor of 100
(compare compounds 44, bearing an isopropyl group, and 15,
with a PO(n-Pr)2). The accurate estimation of the magnitude of
free energy changes associated with these modifications remains
challenging for various reasons which are outside of the scope
of this work but have been extensively analyzed by other
researchers.2 In summary, the potency in this data set is largely
driven by the hydrophobic effect in the R1 pocket. The R2 and
R3 substituents have a significantly smaller influence on the
SAR. Furthermore, their effect appears to be driven by ligand−
protein interactions, ligand conformation, and possibly water-
mediated interactionsall factors which WaterMap does not

Figure 3. (A) Experimental vs computed ΔGbind (WaterMap) for the complete data set (r2 = 0.55, PI = 0.72). (B) Experimental vs computed ΔGbind
(WaterMap) for the R3 substituents (r2 = 0.65, PI = 0.76).
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account for. Overall, WaterMap correctly identified “hot” spots
in the enzyme binding site of SRC. By placing the most
unfavorable waters at the site of the template and the
hydrophobic R1 substituent, and less unfavorable waters at
the other two substitution sites, WaterMap qualitatively
reflected the trend in the 2D SAR. Quantitatively, WaterMap
scoring was dominated by the R1 effect. Separating the
compounds into subsets, to evaluate WaterMap performance
for single-site substitution, we saw some improvement. For one
subset of compounds at the solvent front, WaterMap provided
good ranking; however, for the second subset of compounds
(ribose pocket), no correlation was achieved. At this time,
researchers have reported successful application of the mixed
MM-GB/SA and WaterMap scoring functions, where the
combination of scoring terms is designed to compensate the
known deficiencies of each method.2,22 We had attempted the
combination of these functions; however, due to poor
performance of WaterMap scoring on this data set, the
combined WM/MM-GB/SA scoring did not demonstrate
improvement over MM-GB/SA scoring. In summary, Water-
Map was not an appropriate quantitative scoring tool for this
data set, because hydrophobic effects alone do not explain the
SAR in this series. Other factors, such as ligand−protein
interactions, which are not accounted for by WaterMap, make
significant contributions to the binding affinity of the inhibitors.
The results from MM-GB/SA correlated better with the
experimental results for these SRC inhibitors. Nonetheless,
despite the challenges presented by our data set, the insights
gained from WaterMap combined with the scoring ability of
MM-GB/SA provide a useful picture of the structure−activity
relationship in this series. Our results indicate a potential utility
of combining WaterMap and MM-GB/SA for analysis of other
lead optimization series.
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